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These notes provide some background for four lectures that I will be giving this year for the M.Sc
Quantitative Methods course. I will use slides for the lectures themselves. I will make the slides
available online after our last lecture. It is likely that there will be some things in these notes that
we do not have time to cover in class, and we may cover some things in class that are not cov-
ered in these notes. Though we will focus in class on the most important issues, please consider
all of the lectures and all of these notes to be potentially relevant for the exam (except where noted).

For each lecture, I have ‘starred’ (‘?’) references to Cameron and Trivedi (2005) and to Wooldridge
(2002 and 2010). You are required to read at least one of these, but you do not need to read more.
I have also provided other references; you are not required or expected to read these.
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1 Lecture 1: Binary Choice I
Required readings (for Lectures 1 and 2):

• ? CAMERON, A.C. AND TRIVEDI, P.K. (2005): Microeconometrics: Methods and Appli-
cations. Cambridge University Press, pages 463 – 478 (i.e. sections 14.1 to 14.4, inclusive)
or

• ? WOOLDRIDGE, J. (2002): Econometric Analysis of Cross Section and Panel Data. The
MIT Press, pages 453 – 461 (i.e. sections 15.1 to 15.4, inclusive)
or

• ? WOOLDRIDGE, J. (2010): Econometric Analysis of Cross Section and Panel Data (2nd
ed.). The MIT Press, pages 561 – 569 (i.e. sections 15.1 to 15.4, inclusive).

Other references:

• TRAIN, K. (2009): Discrete Choice Methods with Simulation. Cambridge University Press.

• GOULD, W., PITBLADO, J. AND SRIBNEY, W. (2006): Maximum Likelihood Estimation
with Stata. Stata Press.

1.1 An illustrative empirical question
Our first two lectures consider models for binary dependent variables; that is, models for contexts
in which our outcome of interest takes just two values. We will focus on a simple illustrative ques-
tion: how has primary school attendance changed over time in Tanzania? There are many reasons
that this question may be important for empirical researchers — for example, it may be of histor-
ical interest in understanding Tanzania’s long-run economic development, or it may be important
for considering present-day earnings differences across Tanzanian age cohorts.

We shall consider this question using data from Tanzania’s 2005/2006 Integrated Labour Force
Survey (‘ILFS’). For simplicity, we will consider a single explanatory variable: the year in which
a respondent was born. We index individuals by i, and denote the ith individual’s year of birth as
xi. We record educational attainment by a dummy variable, yi, defined such that:

yi =

{
0 if the ith individual did not complete primary education;
1 if the ith individual did complete primary education. (1.1)

(Note immediately that — as with all binary outcome models — this denomination is arbitrary:
for example, we could just as easily reverse the assignment of 0 and 1 without changing anything
of the structure of the problem.)

Figure 1.1 illustrates the data: it shows the education dummy variable on the y axis (with data
points ‘jittered’, for illustrative clarity), and the age variable on the x axis. Note that we will limit
consideration to individuals born between 1920 and 1980 (inclusive).
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1.2 A simple model of binary choice

Figure 1.1: Primary school attainment in Tanzania across age cohorts

1.2 A simple model of binary choice
We began with a somewhat imprecise question: how has primary school attendance changed over
time in Tanzania? More formally, we will be interested in estimating the following ‘object of
interest’:

Pr(yi = 1 |xi). (1.2)

That is, we will build and estimate a model of the probability of attaining a primary school educa-
tion, conditional upon year of birth.

As with most econometric outcome variables, investment in primary school education is a matter
of choice. We therefore begin by specifying a (very simple) microeconomic model of investment
in education. Denote the ith household’s utility of attending primary school as US

i (xi) and the
utility of not attending school (i.e. ‘staying home’) as UH

i (xi). For simplicity, we will assume that
each utility function is additive in the year in which a child was born:1

US
i (xi) = αS0 + αS1xi + µSi (1.3)

UH
i (xi) = αH0 + αH1 xi + µHi . (1.4)

1 This would be the case, for example, if we think that the ‘utility cost’ of primary education has changed linearly
over time — or, indeed, the ‘utility benefit’ from a primary education.
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1.3 The probit model

This is a very simple example of an ‘additive random utility model’ (‘ARUM’).

Define β0 ≡ αS0 − αH0 , β1 ≡ αS1 − αH1 and εi ≡ µSi − µHi . Then, trivially, we model a household
as having invested in primary education if:

β0 + β1xi + εi ≥ 0. (1.5)

We can therefore define a ‘latent variable’, y∗i :

y∗i (xi; β0, β1) ≡ β0 + β1xi + εi. (1.6)

We can express this latent variable as determining our outcome variable for the ith individual:

yi =

{
0 if y∗i < 0
1 if y∗i ≥ 0.

(1.7)

So far, so good — but we’re still not in a position to estimate the object of interest. To do this, we
need to make a distributional assumption.

1.3 The probit model
Assumption 1.1 (DISTRIBUTION OF εi) εi is i.i.d. with a standard normal distribution, indepen-
dent of xi:

εi |xi ∼ N (0, 1). (1.8)

You will be familiar with the normal distribution, and with the concepts of the probability density
and the cumulative density. Recall that the probability density function φ(x) is:

φ(x) =
1√
2π
· exp

(
−x

2

2

)
, (1.9)

and that the cumulative density function (Φ(x)) has no closed-form expression:

Φ(x) =

∫ x

−∞
φ(z) dz. (1.10)

Figure 1.2 illustrates. With our distributional assumption, we can now write the conditional prob-
ability of primary education:2

Pr(yi = 1 |xi; β0, β1) = Pr(β0 + β1xi + εi ≥ 0 |xi) (1.11)
= Pr(−εi ≤ β0 + β1xi |xi) (1.12)
= Pr(εi ≤ β0 + β1xi |xi) (1.13)
= Φ(β0 + β1xi) (1.14)

∴ Pr(yi = 0 |xi; β0, β1) = 1− Φ(β0 + β1xi). (1.15)

2 Note that equation 1.13 follows from equation 1.12 because, under the assumption of normality, the distribution of
ε is symmetric.
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1.3 The probit model

Figure 1.2: The standard normal: probability density (φ(·)) and cumulative density (Φ(·))
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Equation 1.14 (and, equivalently, equation 1.15) defines the ‘probit model’. There is certainly no
need to motivate the probit model with an additive random utility approach, as we have done;
indeed, the vast majority of empirical papers (and econometrics textbooks) start merely with some
equivalent to equation 1.14. But the additive random utility approach is useful (i) for thinking about
how microeconomic models may motivate econometric analysis, (ii) for explaining the ‘latent
variable interpretation’ of the probit model, and (iii) to lay the conceptual groundwork for other
limited depdenent variable models that we will discuss later (in particular, models of multinomial
choice). Train (2009, page 14) explains the utility-based approach in discrete choice models as
follows:

Discrete choice models are usually derived under an assumptiion of utility-maximising
behaviour by the decision maker. . . It is important to note, however, that models de-
rived from utility maximisation can also be used to represent decision making that
does not entail utility maximisation. The derivation assumes that the model is consis-
tent with utility maximisation; it does not preclude the model from being consistent
with other forms of behaviour. The models can also be seen as simply describing
the relation of explanatory variables to the outcome of a choice, without reference to
exactly how the choice is made.

5 simon.quinn@economics.ox.ac.uk



1.4 Estimation by maximum likelihood

1.4 Estimation by maximum likelihood
1.4.1 The log-likelihood

Equation 1.14 defines the probit model. But this still requires a method of estimation. The method
used for the probit model is maximum likelihood.3 For the ith individual, the likelihood can be
written as:

Li(β0, β1; yi |xi) = Pr(yi = 1 |xi; β0, β1)yi · Pr(yi = 0 |xi; β0, β1)1−yi (1.16)

= Φ(β0 + β1xi)
yi · [1− Φ(β0 + β1xi)]

1−yi . (1.17)

The log-likelihood, therefore, is:

`i(β0, β1; yi |xi) = yi · ln Φ(β0 + β1xi) + (1− yi) · ln [1− Φ(β0 + β1xi)] . (1.18)

Denoting the stacked values of yi and xi as y and x respectively, we can write the likelihood for a
sample of N individuals as:

`(β0, β1;y |x) =
N∑
i=1

{yi · ln Φ(β0 + β1xi) + (1− yi) · ln [1− Φ(β0 + β1xi)]} . (1.19)

You will be aware that several numerical algorithms may be used to find the values (β̂0, β̂1) that
jointly maximise this log-likelihood — for example, the Newton-Raphson method, the Berndt-
Hall-Hall-Hausman algorithm, the Davidson-Fletcher-Powell algorithm, the Broyden-Fletcher-
Goldfarb-Shanno algorithm, etc. Happily, Stata (and other statistical packages) has these algo-
rithms built in, so we can use these algorithms without having to code them ourselves.

1.4.2 Properties of the maximum likelihood estimator

Before we go on with our probit example, we should briefly revise several important properties
of maximum likelihood estimators. Suppose that we have an outcome vector, y, and a matrix of
explanatory variables, X; further, suppose that we are interested in fitting a parameter vector β.
You will recall that we can generally specify the log-likelihood as:

`(β;y |X) = ln f(y |X;β); (1.20)

that is, the log-likelihood is the log of the conditional probability density (or probability mass) of
y, given X , for some parameter value β. This can formally be described as the conditional log-
likelihood function, but we usually just term it ‘the log-likelihood’.4 Further, you will recall that, if

3 However, this is certainly not the only way we could estimate the probit model. For example, equation 1.14 implies
that E(yi |xi) = Φ(β0 + β1xi); the model could therefore also be estimated by Nonlinear Least Squares (i.e. a
method-of-moments estimator).

4 Cameron and Trivedi (page 139) note that ignoring the marginal likelihood of X is not a problem “if f(y |X) and
f(X) depend on mutually exclusive sets of parameters”; that is, if there is no endogeneity problem.
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1.4 Estimation by maximum likelihood

we assume observations are independent across individuals, we can decompose the log-likelihood
as:

`(β;y |X) =
N∑
i=1

`i(β; yi |xi) =
N∑
i=1

ln f(yi |xi;β). (1.21)

The maximum likelihood estimate β̂ML therefore solves:

∂`(β;y |X)

∂β

∣∣∣∣
β=β̂ML

= 0, (1.22)

where the lefthand side of this expression is called the ‘score vector’.

You will recall further that all maximum likelihood estimators share at least four important prop-
erties:

(i) Consistency: In general terms, an estimator is consistent if, as the number of observations
becomes very large, the probability of the estimator missing the true parameter value goes
to zero. Suppose that we are trying to estimate some true scalar parameter β, and that we
are using a maximum likelihood estimator β̂ML, with N observations in our sample. Then
consistency means that, for any ε > 0,

lim
N→∞

Pr(|β̂ML − β| > ε) = 0. (1.23)

We can describe this by saying “β̂ML converges in probability to the true value β”, and we
can write

plim
N→∞

β̂ML = β. (1.24)

(ii) Asymptotic normality: Assuming some regularity conditions, the asymptotic distribution
of a maximum likelihood estimator is normal:5

√
N ·

(
β̂ − β

)
d→N

(
0, I(β)−1

)
, (1.25)

where I(β) = −E
(
∂2`i(β; yi |xi)

∂β∂β′

)
. (1.26)

We generally estimate I(β) using:

Î(β̂ML) = − 1

N

N∑
i=1

∂2`i(β)

∂β∂β′

∣∣∣∣∣
β=β̂ML

. (1.27)

5 See, for example, page 392 of Wooldridge (2002) for those conditions. In this context, the conditions are: (i) that β
is interior to the set of possible values for β, and (ii) that the log-likelihood is twice continuously differentiable on
the interior of that set. We will not need to worry about these conditions in these lectures.
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1.4 Estimation by maximum likelihood

Suppose, then, that we want to test a hypothesis H0: β = β0. The estimated covariance
matrix Î(β̂ML)−1 can be used to perform a Wald test. Alternatively, we can perform a
Likelihood Ratio test:

2 ·
[
`
(
β̂ML

)
− ` (β0)

]
∼ χ2(k), (1.28)

where k is the number of restricted parameters in β0.

(iii) Efficiency: Equations 1.25 and 1.26 show that, asymptotically, the variance of maximum
likelihood estimators is the ‘Cramér-Rao lower bound’ (i.e. the inverse of the Fisher in-
formation matrix). That is, maximum likelihood estimators are efficient: the asymptotic
variance of the maximum likelihood estimator is at least as small as the variance of any
other consistent estimator of the parameter.

(iv) Invariance: If γ = f (β) is a one-to-one, continuous and continuously differentiable func-
tion, γ̂ML = f

(
β̂ML

)
.

1.4.3 Goodness of fit in the probit model

For simplicity, let’s return to our earlier example of a probit model with a single explanatory vari-
able. You will be familiar with the R2 statistic from linear regression models; this statistic reports
the proportion of variation in the outcome variable that is explained by variation in the regres-
sors. Unfortunately, this statistic does not generalise naturally to the maximum likelihood context.
Instead, the standard goodness-of-fit statistic for maximum likelihood estimates is ‘McFadden’s
Pseudo-R2’:

R2
p ≡ 1− `(β̂)

`0
, (1.29)

where `(β̂) is the value of the maximised log-likelihood, and `0 is the log-likelihood for a model
without explanatory variables (so, in the context of our probit model, `0 is the log-likelihood for a
probit estimation using Pr(yi = 1 |x) = Φ(β0)). You should confirm that we will always obtain
R2
p ∈ (0, 1).

Additionally, in a binary outcome model, we may wish to report the ‘percent correctly predicted’.
Wooldridge (2002, page 465) explains:

For each i, we compute the predicted probability that yi = 1, given the explanatory
variables, xi. If [Φ(β̂0+β̂1xi) > 0.5], we predict yi to be unity; if [Φ(β̂0+β̂1xi) ≤ 0.5],
yi is predicted to be zero. The percentage of times the predicted yi matches the actual
yi is the percent correctly predicted. In many cases it is easy to predict one of the
outcomes and much harder to predict another outcome, in which case the percent
correctly predicted can be misleading as a goodness-of-fit statistic. More informative
is to compute the percent correctly predicted for each outcome, y = 0 and y = 1.
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1.5 Normalisations in the probit model

1.4.4 Back to Tanzania. . .

Table 1.1 reports the results of the probit estimation for Tanzania (see column (1)). We estimate
β̂0 = −90.395 and β̂1 = 0.046; both estimates are highly significant. Columns (2) and (3) show
respectively the estimated mean marginal effect and the estimated marginal effect at the mean (that
is, the estimated marginal effect for xi = 1962.627). (We will discuss the concept of marginal
effects shortly.) Figure 1.3 shows the predicted probability of primary school attainment: Φ(β̂0 +
β̂1 · xi). (Appendix 1 provides the basic Stata commands for producing these estimates.)

Table 1.1: Probit estimates for primary school attainment in Tanzania

Estimates Marginal Effects
Mean effect Effect at mean

(1) (2) (3)
Year born 0.046 0.015 0.018

(0.001)∗∗∗ (0.0002)∗∗∗ (0.0004)∗∗∗

Const. -90.395
(2.075)∗∗∗

Obs. 10000
Log-likelihood -5684.679
Pseudo-R2 0.165
Successes correctly predicted (%) 84.7
Failures correctly predicted (%) 57.2
Mean of "year born" 1962.627
Confidence: ***↔ 99%, **↔ 95%, *↔ 90%.

1.5 Normalisations in the probit model
We assumed earlier that εi ∼ N (0, 1). But suppose instead that we had assumed more generally
that εi ∼ N (µ, σ2). In that case, we would write the conditional probability as:

Pr(yi = 1 |xi; β0, β1) = Pr(β0 + β1x+ εi ≥ 0 |xi) (1.30)
= Pr(εi ≤ β0 + β1xi |xi) (1.31)

= Pr

(
εi − µ
σ
≤ β0 − µ

σ
+
β1
σ
· xi
∣∣∣∣ xi) (1.32)

= Φ

(
β0 − µ
σ

+
β1
σ
· xi
)

(1.33)

∴ Pr(yi = 0 |xi; β0, β1) = 1− Φ

(
β0 − µ
σ

+
β1
σ
· xi
)
. (1.34)
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1.5 Normalisations in the probit model

Figure 1.3: Probit estimates for primary school attainment in Tanzania

This clearly presents a problem: the best that we can now do is to identify the objects (β0 − µ)·σ−1
and β1 · σ−1. That is, the earlier assumptions that µ = 0 and σ = 1 are identifying assumptions:
they are normalisations without which we cannot identify either β0 or β1.

This should not come as a surprise: remember that we can always take a monotone increasing
transformation of a utility function without changing any of the observed choices. This has an
important implication for the way that we interpret the magnitude of parameter estimates from
discrete choice models; as Train explains (2009, page 24, emphasis in original):

The [estimated coefficients in a probit model] reflect, therefore, the effect of the ob-
served variables relative to the standard deviation of the unobserved factors.
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1.6 Interpreting the results: Marginal effects

1.6 Interpreting the results: Marginal effects
The parameter estimates from a probit model are often difficult to interpret in any intuitive sense;
a policymaker, for example, is hardly likely to be impressed if told that “the estimated effect of
age on primary school completion in Tanzania is β̂1 = 0.048”! Instead, the interpretation of probit
estimates tends to focus upon (i) the predicted probabilities of success and, consequently, (ii) the
estimated marginal effects.

In a binary outcome model, a given marginal effect is the ceteris paribus effect of changing one
individual characteristic upon an individual’s probability of ‘success’. In the context of the Tan-
zanian education data, the marginal effects measure the predicted difference in the probability of
primary school attainment between individuals born one year apart.

Having estimated the parameters β̂0 and β̂1, the estimated marginal effects follow straightfor-
wardly. For an individual i born in year xi, the predicted probability of completing primary educa-
tion is:

Pr(yi = 1 |xi; β̂0, β̂1) = Φ
(
β̂0 + β̂1 · xi

)
. (1.35)

Had the ith individual been born a year later, (s)he would have a predicted probability of complet-
ing primary education of:

Φ
(
β̂0 + β̂1 · (xi + 1)

)
. (1.36)

For the ith individual, the estimated marginal effect of the variable x is therefore:

Md(xi; β̂0, β̂1) = Φ
(
β̂0 + β̂1 · (xi + 1)

)
− Φ

(
β̂0 + β̂1 · xi

)
. (1.37)

Md(xi; β̂0, β̂1) provides the marginal effect for the discrete variable xi. If xi were continuous — or
treated as being continuous for simplicity (an approximation that often works well) — we would
instead use:

Mc(xi; β̂0, β̂1) =
∂ Pr(yi = 1 |xi; β̂0, β̂1)

∂xi
(1.38)

= β̂1 · φ
(
β̂0 + β̂1 · xi

)
. (1.39)

Figure 1.4 shows the predicted probabilities of success for the Tanzanian data — as in Figure 1.3
— but superimposes the estimated marginal effects (where, for simplicity, I have treated year of
birth as a continuous variable). You will see the the estimated marginal effect is greatest for in-
dividuals born in 1959 — and that this is the year for which the predicted probability of primary
attainment is (approximately) 0.5. This is clearly no coincidence: the function φ(x) is maximised
at x = 0, and Φ(0) = 0.5.
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1.6 Interpreting the results: Marginal effects

Figure 1.4: Probit estimates and marginal effects for primary school attainment in Tanzania

Figure 1.4 shows one way of reporting the marginal effects — i.e. by calculating the marginal
effects separately for all individuals in the sample, and then graphing. But there are several al-
ternative approaches: for example, statistical packages generally report either the average of the
marginal effects across the sample, or the marginal effect at the mean of the regressors.6 Alterna-
tively, you may wish to take some weighted average of the sample marginal effects, if the sample
is unrepresentative of the population of interest. Table 1.1 earlier reported both the mean marginal
effect and the marginal effect at the mean.

In short, the marginal effects are particularly important for binary outcome variables, and it is
generally a very good idea to report marginal effects alongside estimates of the parameters (or,
indeed, instead of them). Standard statistical packages can compute estimated marginal effects
straightforwardly — and, similarly, can use the delta method to calculate corresponding standard
errors.

6 Cameron and Trivedi (page 467) prefer the former; they say, “it is best to use. . . the sample average of the marginal
effects. Some programs instead evaluate at the sample average of the regressors. . . ”.
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1.7 Appendix to Lecture 1: Stata code

1.7 Appendix to Lecture 1: Stata code
First, let’s clear Stata’s memory and load our dataset.

clear

use WorkingSample

We can then tabulate primaryplus, the dummy variable that records whether or not a respon-
dent has primary education (or higher):

tab primaryplus

Similarly, let’s summarise the variable yborn, which records the year in which each respondent
was born:

summarize yborn

Time to estimate. We begin with our probit model; try help probit.

Now let’s calculate marginal effects — first as the mean across the sample, and then as the marginal
effect at the mean of yborn. To do this, try help margins.

13 simon.quinn@economics.ox.ac.uk



2 Lecture 2: Binary Choice II
Required readings (for Lectures 1 and 2):

• ? CAMERON, A.C. AND TRIVEDI, P.K. (2005): Microeconometrics: Methods and Appli-
cations. Cambridge University Press, pages 463 – 478 (i.e. sections 14.1 to 14.4, inclusive)
or

• ? WOOLDRIDGE, J. (2002): Econometric Analysis of Cross Section and Panel Data. The
MIT Press, pages 453 – 461 (i.e. sections 15.1 to 15.4, inclusive)
or

• ? WOOLDRIDGE, J. (2010): Econometric Analysis of Cross Section and Panel Data (2nd
ed.). The MIT Press, pages 561 – 569 (i.e. sections 15.1 to 15.4, inclusive).

Other references:

• HARRISON, G. (2011): “Randomisation and Its Discontents,” Journal of African Economies,
20(4), 626–652.

• ANGRIST, J.D. AND PISCHKE, J.S. (2008): Mostly Harmless Econometrics: An Empiri-
cist’s Companion. Princeton University Press.

2.1 The logit model
Lecture 1 considered the probit model: a model of binary choice in which the latent error variable
is assumed to have a standard normal distribution. You will recall that, in the context of a single
explanatory variable (xi), this model can be summarised succinctly by our earlier equation 1.14:

Pr(yi = 1 |xi; β0, β1) = Φ(β0 + β1xi). (1.14)

An alternative approach is to assume that the latent unobservable has a ‘logistic distribution’:

Assumption 2.1 (DISTRIBUTION OF εi) ε is i.i.d. with a logistic distribution, independent of x:

Pr(ε ≤ Z |x) = Λ(Z) (2.1)

=
exp(Z)

1 + exp(Z)
. (2.2)

Figure 2.1 shows the cdf of the logistic distribution, compared to the normal.
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2.1 The logit model

Figure 2.1: Cumulative density functions: normal and logistic distributions

Symmetric to our derivation of the probit specification, we can write:

Pr(yi = 1 |xi; β0, β1) = Pr(εi ≤ β0 + β1xi |xi) (2.3)
= Λ(β0 + β1xi). (2.4)

Equation 2.4 is directly analogous to equation 1.14; it defines the ‘logit model’. The logit model is
an alternative to the probit model for estimating the conditional probability of a binary outcome.
For any given dataset, the predicted probabilities from a logit model are generally almost identical
to those from a probit model, as we will see later in this lecture.

All of the reasoning from Lecture 1 extends by analogy to the case of the logit model: we can
follow the same principles to (i) form the log-likelihood, (ii) maximise the log-likelihood, (iii)
measure the goodness-of-fit, (iv) normalise our parameter estimates and (v) interpret the marginal
effects. We will not rehearse these principles in this lecture, but you should understand the way
that they extend from the probit case to the logit case.
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2.2 The log-odds ratio in the logit model

2.2 The log-odds ratio in the logit model
The probit model and the logit model are almost identical in their implications. However, when
we use the logit model, we sometimes speak about the ‘odds ratio’, because this ratio has a natural
relationship to the estimated parameters from a logit specification.7

Generally, the odds ratio is defined as:

odds ratio =
probability of success
probability of failure

. (2.5)

In the context of our Tanzanian problem, and using the logit specification, we can write:

odds ratioi =
Pr(yi = 1 |xi; β0, β1)
Pr(yi = 0 |xi; β0, β1)

(2.6)

=
Pr(yi = 1 |xi; β0, β1)

1− Pr(yi = 1 |xi; β0, β1)
(2.7)

=

(
exp(β0 + β1xi)

1 + exp(β0 + β1xi)

)
·
(

1

1 + exp(β0 + β1xi)

)−1
(2.8)

= exp (β0 + β1xi) . (2.9)

In the logit model, we can therefore interpret the index β0 + β1xi as providing the ‘log odds ratio’,
so that the parameter β1 shows the effect of xi on this log ratio:

β0 + β1xi = ln (odds ratioi) (2.10)

β1 =
∂ ln (odds ratioi)

∂xi
. (2.11)

This implies that, for a small change in xi, the value 100β1 ·∆xi is approximately the percentage
change in the odds ratio.

2.3 Probit or logit?
Cameron and Trivedi have an extensive discussion of the theoretical and empirical considerations
in choosing between the probit or logit model: see pages 471–473. In these notes, I would like
simply to emphasise their comment about empirical considerations:

Empirically, either logit and probit can be used. There is often little difference between
the predicted probabilities from probit and logit models. The difference is greatest in
the tails where probabilities are close to 0 or 1. The difference is much less if interest
lies only in marginal effects averaged over the sample rather than for each individual.

Figure 2.2 illustrates this point by comparing estimates from the Tanzanian data.
7 Of course, this doesn’t mean that we can’t talk about the odds ratio when discussing other models — just that the

ratio has a more intuitive relationship to the parameters of interest in the logit model.
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2.4 The Linear Probability Model

Figure 2.2: Probit estimates and logit estimates for primary school attainment in Tanzania

2.4 The Linear Probability Model
To this point, we have considered two models: probit and logit. We have specified these models
in terms of a conditional probability of success, but we could equally specify them in terms of the
conditional expectation of the outcome variable:

E(yi |xi; β0, β1) = 1× Pr(yi = 1 |xi; β0, β1) + 0× Pr(yi = 0 |xi; β0, β1) (2.12)
= Pr(yi = 1 |xi; β0, β1). (2.13)

Thus, for the probit model, we used:

E(yi |xi; β0, β1) = Φ(β0 + β1xi); (2.14)

for the logit model, we used:

E(yi |xi; β0, β1) = Λ(β0 + β1xi). (2.15)

A simpler approach is to assume that the conditional probability of success — and, therefore, the
conditional expectation of the outcome — is linear in the explanatory variable(s):

E(yi |xi; β0, β1) = β0 + β1xi (2.16)
⇔ yi = β0 + β1xi + εi, (2.17)
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2.4 The Linear Probability Model

where E(εi |xi) = 0.

This is known as the ‘Linear Probability Model’, or ‘LPM’ for short. As equation 2.17 implies,
the parameters of interest for the LPM can be obtained very simply: just use OLS. We will not
rehearse here the principles involved in OLS estimation.

2.4.1 Predicted probabilities and marginal effects in the Linear Probability Model

Predicted probabilities in the LPM are trivial:

P̂r
(
yi = 1 |xi; β̂0, β̂1

)
= β̂0 + β̂1xi. (2.18)

Note that nothing constrains this predicted probability to lie in the unit interval. We will return to
this point shortly.

Marginal effects in the LPM are similarly trivial: whether xi is discrete or continuous, its estimated
marginal effect is β̂1. Note that this marginal effect is identical across all values of x.

2.4.2 Heteroskedasticity in the Linear Probability Model

The Linear Probability Model generally produces heteroskedastic errors. We can illustrate this
straightforwardly using our simple example; for a given xi, we have:

εi =

{
1− β0 − β1xi with conditional probability β0 + β1xi
−β0 − β1xi with conditional probability 1− β0 − β1xi.

(2.19)

Figure 2.3 illustrates. We know that Var(εi |xi) = E (ε2i |xi) − [E (εi |xi)]2, and — as we noted
earlier — E(εi |xi) = 0. We therefore have:

Var(εi |xi) = E
(
ε2i |xi

)
(2.20)

= Pr(yi = 1 |xi) · (1− β0 − β1xi)2 + Pr(yi = 0 |xi) · (−β0 − β1xi)2 (2.21)

= (β0 + β1xi) · (1− β0 − β1xi)2 + (1− β0 − β1xi) · (−β0 − β1xi)2 (2.22)
= (β0 + β1xi) · (1− β0 − β1xi) . (2.23)

Therefore, Var(εi |xi) depends upon xi so long as β1 6= 0.8 The simplest way of dealing with this
problem is to use White’s heteroskedasticity-robust standard errors (which can be implemented
straightforwardly in Stata using the ‘robust’ option). Alternatively, we could use Weighted
Least Squares; this produces more efficient estimates, but requires predicted probabilities to lie
between 0 and 1 (which, as we discussed, is not guaranteed in the LPM).

8 Note, then, that if we are testing a null hypothesis H0 : β1 = 0 in this model, we do not need to worry about
heteroskedasticity.

18 simon.quinn@economics.ox.ac.uk



2.5 LPM or MLE?

Figure 2.3: Heteroskedasticty in the Linear Probability Model
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2.5 LPM or MLE?
2.5.1 Relative advantages and disadvantages

We noted earlier that the difference between probit and logit is very small — both in terms of
the estimates that they provide and in terms of their underlying structure. The Linear Probability
Model, however, is clearly quite different — for example, as Cameron and Trivedi note (page 466),
the Linear Probability Model, unlike probit and logit, “does not use a cdf”. So which approach
should be preferred — probit/logit on the one hand, or the Linear Probability Model on the other?

This can be quite a controversial issue in applied research! On the one hand, many researchers
prefer the probit or logit models, on the basis that they constrain predicted probabilities to the
unit interval, and that they therefore imply sensible marginal effects across the entire range of
explanatory variables. Cameron and Trivedi, for example, say (page 471):

Although OLS estimation with heteroskedastic standard errors can be a useful ex-
ploratory data analysis tool, it is best to use the logit or probit MLE for final data
analysis.

In a 2011 article about Randomised Controlled Trials (‘RCT’) in the Journal of African Economies,
Harrison said this about the use of OLS for limited dependent variable models (footnote omitted):9

9 Harrison also discussed the issue in his presentation at the 2011 CSAE Annual Conference, available at http:
//www.csae.ox.ac.uk/conferences/2011-EdiA/video.html.
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2.5 LPM or MLE?

One side-effect of the popularity of RCT is the increasing use of Ordinary Least
Squares estimators when dependent variables are binary, count or otherwise truncated
in some manner. One is tempted to call this the OLS Gone Wild reality show, akin to
the Girls Gone Wild reality TV show, but it is much more sober and demeaning stuff.
I have long given up asking researchers in seminars why they do not just report the
marginal effects for the right econometric specification. Instead I ask if we should just
sack those faculty in the room who seem to waste our time teaching things like logit,
count models or hurdle models.

In their book Mostly Harmless Econometrics, Angrist and Pischke (2009, page 94) take a different
approach:

Should the fact that a dependent variable is limited affect empirical practice? Many
econometrics textbooks argue that, while OLS is fine for continuous dependent vari-
ables, when the outcome of interest is a limited dependent variable (LDV), linear re-
gression models are inappropriate and nonlinear models such as probit and Tobit are
preferred. In contrast, our view of regression as inheriting its legitimacy from the
[Conditional Expectation Function] makes LDVness less central.

That is, the Linear Probability Model can still be used to estimate the average marginal effect.
Cameron and Trivedi acknowledge (page 471) that:

The OLS estimator [that is, the Linear Probability Model] is nonetheless useful as an
exploratory tool. In practice it provides a reasonable direct estimate of the sample-
average marginal effect on the probability that y = 1 as x changes, even though it
provides a poor model for individual probabilities. In practice it provides a good guide
to which variables are statistically significant.

Further, the Linear Probability Model is sometimes preferred for computational reasons; maximum
likelihood models can prove much more difficult to estimate where, for example, there is a very
large number of observations or a large number of explanatory variables.

2.5.2 Estimates from Tanzania

Table 2.1 reports estimates from the probit, logit and LPM models for the Tanzanian education
example; Figure 2.4 shows the predicted probabilities. Together, the table and figure illustrate
several important features of the three models. First, all three models predict very similar mean
marginal effects. Second, the mean marginal effect for the Linear Probability Model is identical
to the parameter estimate.10 Third, the probit and logit models predict conditional probabilities in
the unit interval; in contrast, the LPM implies nonsensical predicted probabilities for people born
before about 1925.
10 For this reason, we would never report the estimate and the marginal effect separately for the LPM; I have done so

here simply to emphasise their equivalence.
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2.5 LPM or MLE?

Table 2.1: Probit, logit and LPM results from Tanzania

Probit Logit LPM
Estimate Marginal Estimate Marginal Estimate Marginal

(1) (2) (3) (4) (5) (6)
Year born 0.046 0.015 0.077 0.015 0.016 0.016

(0.001)∗∗∗ (0.0002)∗∗∗ (0.002)∗∗∗ (0.0002)∗∗∗ (0.0003)∗∗∗ (0.0003)∗∗∗

Const. -90.395 -149.997 -30.510
(2.075)∗∗∗ (3.651)∗∗∗ (0.514)∗∗∗

Obs. 10000 10000 10000
Log-likelihood -5684.679 -5680.831
Pseudo-R2 0.165 0.165
R2 0.210

Correctly predicted:
Successes (%) 84.7 84.7 86.3
Failures (%) 57.2 57.2 55.2
Confidence: ***↔ 99%, **↔ 95%, *↔ 90%.
‘Marginal’ refers to the mean marginal effect. The Linear Probability Model was run using White’s heteroskedasticity-
robust standard errors.

Figure 2.4: LPM, probit and logit estimates for primary school attainment in Tanzania
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2.6 The single-index assumption

2.6 The single-index assumption
Albert Einstein once famously declared that “the supreme goal of all theory is to make the irre-
ducible basic elements as simple and as few as possible without having to surrender the adequate
representation of a single datum of experience”. (This is often misquoted simply as: “everything
should be made as simple as possible, but no simpler”.) In this spirit, we have considered the
probit, logit and LPM models solely in the context of a single (scalar) explanatory variable, xi.
All of the basic principles of these estimators can be understood in this way, so we have not yet
considered the multivariate context.

In most empirical applications, however, we have more than one explanatory variable. It is straight-
forward to take all of our previous reasoning on xi and generalise it to a vector xi, by replacing
β0 + β1xi with the linear index β · xi (where, generally, xi is understood as including an element
‘1’, to allow an intercept). This is how we deal with multiple explanatory variables in the context
of the probit, logit and LPM models; thus, in the multivariate case, we specify either:

Pr(yi = 1 |xi) = Φ (β · xi) for probit, (2.24)
or Pr(yi = 1 |xi) = Λ (β · xi) for logit, (2.25)
or Pr(yi = 1 |xi) = β · xi for LPM. (2.26)

This is a very general structure; it permits quite flexible estimation of binary outcome models
with a large number of explanatory variables. However, note that the explanatory variables enter
linearly through a ‘single index’, β ·xi. It is easy to think of functions that violate this assumption.
For example, the left surface of Figure 2.5 shows the function y = Φ(3(x1 + x2 − 1)); this
satisfies the single index assumption because we can write y = F (β · x). But the right surface in
Figure 2.5 shows the function y = 0.5 (Φ(10x1 − 3) + Φ(10x2 − 3)); this cannot be expressed as
y = F (β · x), so it violates the single-index assumption.

2.7 A general framework
If we are willing to impose the single-index assumption, we can write the probit, logit and LPM
models as special cases of a very general structure:

Pr(yi = 1 |xi) = F (β · xi) , (2.27)

where F (z) = Φ(z) for probit, F (z) = Λ(z) for logit and F (z) = z for the LPM. F can be
referred to as a ‘link function’. If F (z) is a cdf — as it is, for example, for probit and logit
— then we can rewrite all of our earlier maximum likelihood results more generally in terms of
F (z). This is the way, for example, that Cameron and Trivedi introduce probit and logit (see pages
465 to 469 of their text); Wooldridge takes the same approach (se pages 457 – 458 of his 2002 text).

22 simon.quinn@economics.ox.ac.uk



2.7 A general framework

Figure 2.5: The single index restriction: an example (left) and a violation (right)

The surface on the left shows the function y = Φ(3(x1 + x2 − 1)); the graph on the right shows
the function y = 0.5 (Φ(10x1 − 3) + Φ(10x2 − 3)). Thus, the surface on the left may be

expressed as y = f(β ·x), but the surface on the right requires a bivariate function y = g(x1, x2).

More generally, equation 2.27 permits semiparametric estimation, in which a researcher can jointly
estimate the parameter vector β and the link function F . In our simple application with one ex-
planatory variable, this kind of approach just implies fitting a univariate nonparametric function,
y = f(xi) + εi, where E(εi |xi) = 0. Figure 2.6 illustrates, where the function F is fitted with a
kernel.

You do not need to understand any nonparametric or semiparametric methods for these lectures.
However, the underlying point is worth remembering: the probit, logit and LPM models all impose
particular assumptions on the data, and we can sometimes relax these assumptions using more
flexible estimation techniques.
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2.8 Appendix to Lecture 2: Stata code

Figure 2.6: Probit and kernel estimates for primary school attainment in Tanzania

2.8 Appendix to Lecture 2: Stata code
Let’s again clear Stata’s memory and load our dataset.

clear

use WorkingSample

We can run a logit estimation with the logit command (‘help logit’). We can then use the
same margins command as for probit.

Finally, we can run the Linear Probability Model using the command regress, for an OLS
regression. Remember to think about the standard errors!
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3 Lecture 3: Discrete multinomial choice
Required reading:

• ? CAMERON, A.C. AND TRIVEDI, P.K. (2005): Microeconometrics: Methods and Appli-
cations. Cambridge University Press, pages 490 – 506 (i.e. sections 15.1 to 15.5.3, inclusive)
or

• ? WOOLDRIDGE, J. (2002): Econometric Analysis of Cross Section and Panel Data. The
MIT Press, pages 497 – 502 (i.e. section 15.9.1 and part of section 15.9.2)
or

• ? WOOLDRIDGE, J. (2010): Econometric Analysis of Cross Section and Panel Data (2nd
ed.). The MIT Press, pages 643 – 649 (i.e. sections 16.1, 16.2.1 and part of 16.2.2).

Other references:

• LEWIS, W.A. (1954): “Economic Development with Unlimited Supplies of Labour,” The
Manchester School, 22(2), 139–191.

• MCFADDEN, D. (1974): “The Measurement of Urban Travel Demand,” Journal of Public
Economics, 3(4), 303–328.

• MCFADDEN, D. (2000): “Economic Choices”, Nobel Prize Lecture, 8 December 2000.

3.1 Occupational choice in Tanzania
Travel demand forecasting has long been the province of transportation engineers, who
have built up over the years considerable empirical wisdom and a repertory of largely
ad hoc models which have proved successful in various applications. . . [but] there still
does not exist a solid foundation in behavioral theory for demand forecasting practices.
Because travel behavior is complex and multifaceted, and involves ‘non-marginal’
choices, the task of bringing economic consumer theory to bear is a challenging one.
Particularly difficult is the integration of a satisfactory behavioural theory with prac-
tical statistical procedures for calibration and forecasting.

McFadden (1974, emphasis added)

The main sources from which workers come as economic development proceeds are
subsistence agriculture, casual labour, petty trade, domestic service, wives and daugh-
ters in the household, and the increase of population. In most but not all of these
sectors, if the country is overpopulated relatively to its natural resources, the marginal
productivity of labour is negligible, zero, or even negative.

Lewis (1954)
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3.1 Occupational choice in Tanzania

In this lecture, we consider occupational choice in Tanzania. Both geographically and conceptu-
ally, the Tanzanian labour market is a long way from the San Francisco Bay Area Rapid Transit
system (the ‘BART’). Nonetheless, we will analyse occupational choice using some of the econo-
metric methods that Daniel McFadden famously developed to predict demand for the new BART.
Like McFadden, our concern shall be to estimate the conditional probability of various discrete
and unordered choices, and to do so with — as McFadden termed it — “a solid foundation in
behavioral theory”.

Let’s begin in Tanzania. Figure 3.1 describes occupational choice among employed Tanzanians
of different ages. The figure — and our subsequent analysis — uses a ternary outcome variable,
covering three mutually exlusive categories:

yi =


1 if the ith respondent works in agriculture;
2 if the ith respondent is self-employed (outside of agriculture);
3 if the ith respondent is wage employed (outside of agriculture).

(3.1)

Figure 3.1: Occupational categories and age in Tanzania

We will not worry too much today about why occupational choice in Tanzania might matter; as
in earlier lectures, we will use the Tanzanian data as an illustrative vehicle for our econometric
techniques. However, it is not difficult to see why this kind of occupational choice might be
important for understanding Tanzania’s development; the quote from Lewis’s famous 1954 paper,
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3.2 An Additive Random Utility Model

for example, highlights sectoral shifts as an important mechanism for long-run development, and
the data in Figure 3.1 might provide insights into the flexibility with which workers can achieve
such shifts. (For example, if older workers are more likely to choose employment in agriculture
than younger workers, this may suggest some ‘switching costs’ between sectors.)

3.2 An Additive Random Utility Model
As in earlier lectures, we will motivate our econometric methods by a simple underlying microeco-
nomic model. Typically, this kind of choice-theoretic foundation is more common in the analysis
of discrete unordered choice than in the models that we have studied earlier. For example, the la-
tent variable interpretion is a useful approach for thinking about the probit and logit models, but is
not generally a starting point for analysis; similarly, an optimal stopping model is just one possible
foundation for models of discrete ordered choice. But in the analysis of discrete unordered choice,
an additive random utility model is a common starting point. As Cameron and Trivedi (page 506)
explain:

The econometrics literature has placed great emphasis in restricting attention to multi-
nomial models that are consistent with maximisation of a random utility function. This
is similar to restricting analysis to demand functions that are consistent with consumer
choice theory.

Suppose, therefore, that we again have data on N individuals, indexed i ∈ {1, . . . , N}. Assume
that each individual makes a choice yi = j, where there are a finite number J options available.
Critically, suppose that we observe information at the level of each individual, including his/her
choices (that is, we observe xi and yi). That is, we do not observe information at the level of each
available option; we will consider this alternative kind of data structure later in this lecture. You
may query how reasonable it may be to model occupational outcomes purely as a matter of choice
— after all, could an agricultural employee simply choose to take a wage job? — but we will leave
this concern aside for this lecture.

As in Lecture 1, we will assume that the ith individual’s utility from the jth choice is determined
by an additive random utility model:

Uij(xi) = α
(j)
0 + α

(j)
1 xi + εij. (3.2)

Thus, for example, for choices j ∈ {1, 2, 3}, the individual obtains the following utilities:

Ui1(xi) = α
(1)
0 + α

(1)
1 xi + εi1 (3.3)

Ui2(xi) = α
(2)
0 + α

(2)
1 xi + εi2 (3.4)

Ui3(xi) = α
(3)
0 + α

(3)
1 xi + εi3. (3.5)

Together, these three utilities determine the choice of an optimising agent. Figure 3.2 illustrates
preferences between the three options in two-dimensional space; in each box, the bold outcome
represents the agent’s choice.
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Figure 3.2: Multinomial choice among three options

We can, therefore, express the conditional probability of the ith individual choosing, say, option 1:

Pr(yi = 1 |xi) = Pr
[
U (1)(xi) > U (2)(xi) and U (1)(xi) > U (3)(xi) |xi

]
(3.6)

= Pr
[
α
(1)
0 + α

(1)
1 xi + εi1 > α

(2)
0 + α

(2)
1 xi + εi2 and

α
(1)
0 + α

(1)
1 xi + εi1 > α

(3)
0 + α

(3)
1 xi + εi3 |xi

]
. (3.7)

More generally, if the ith individual were to choose yi = j out of J choices, we could write:

Pr(yi = j |xi) = Pr

[
U (j)(xi) > max

k 6=j

(
U (k)(xi)

)
|xi
]

(3.8)

= Pr

[
αj0 + αj1xi + εij > max

k 6=j

(
αk0 + αk1xi + εik

)
|xi
]
. (3.9)

In order to estimate using equation 3.9, we again need to make a distributional assumption.
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3.3 The Multinomial Logit model
Assumption 3.1 (DISTRIBUTION OF εij) εij is i.i.d. with a Type I Extreme Value distribution,
independent of xi:

Pr(εij < z |xi) = Pr(εij < z) = exp (− exp (−z)) . (3.10)

Equation 3.10, of course, defines the cumulative density function F (z); this implies a probability
density function of:

f(z) =
d

dz
exp (− exp (−z)) = exp (−z) · exp (− exp (−z)) (3.11)

= exp (−z) · F (z). (3.12)

Figure 3.3 shows the cumulative density function for the Type I Extreme Value function, compared
to the cdf of the normal.

Figure 3.3: Cumulative density functions: Normal and Type I Extreme Value distributions

Figure 3.4 shows how this distributional assumption might imply the different outcomes yi = 1,
yi = 2 and yi = 3; the figure shows the same two-dimensional space as Figure 3.2, but with
simulated values for Ui1, Ui2 and Ui3. (For simplicity, I have generated the graph by setting all of
the parameters α(j)

0 and α(j)
1 to zero; that is, the graph shows variation generated solely by the Type

I Extreme Value distribution on εij .)
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3.3 The Multinomial Logit model

Figure 3.4: Multinomial choice among three options: Simulated data

With this distributional assumption, we can now find an expression for the conditional probability
that the ith individual chooses outcome j from J choices.11 Note that you do not need to memorise
this derivation for the exam; however, I think the derivation is useful for understanding the under-
lying structure required by multinomial choice models.

First, suppose that the error term for the chosen option, εij , were known. Then we could write:

Pr(yi = j |xi, εij) = Pr

[
U (j)(xi) > max

k 6=j

(
U (k)(xi)

) ∣∣∣∣ xi, εij] (3.13)

= Pr
[
αk0 + αk1xi + εik < αj0 + αj1xi + εij |xi, εij ∀ k 6= j

]
(3.14)

= Pr
[
εik < εij + αj0 + αj1xi − αk0 − αk1xi |xi, εij ∀ k 6= j

]
(3.15)

=
∏
k 6=j

exp
{
− exp

[
−
(
εij + αj0 + αj1xi − αk0 − αk1xi

)]}
. (3.16)

11 This derivation is taken from Train (2009, pages 74-75).
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Of course, εij is not known; we therefore need to integrate across its possible values:

Pr(yi = j |xi) =

∫ ∞
−∞

f(εij) · Pr(yi = j |xi, εij) dεij (3.17)

=

∫ ∞
−∞

exp (−εij) · exp [− exp (−εij)]

·
∏
k 6=j

exp
{
− exp

[
−
(
εij + αj0 + αj1xi − αk0 − αk1xi

)]}
dεij (3.18)

=

∫ ∞
−∞

exp (−εij) ·
∏
k

exp
{
− exp

[
−
(
εij + αj0 + αj1xi − αk0 − αk1xi

)]}
dεij

(3.19)

=

∫ ∞
−∞

exp (−εij) · exp

{
−
∑
k

exp
[
−
(
εij + αj0 + αj1xi − αk0 − αk1xi

)]}
dεij

(3.20)

=

∫ ∞
−∞

exp (−εij)

· exp

{
− exp(−εij) ·

∑
k

exp
[
−
(
αj0 + αj1xi − αk0 − αk1xi

)]}
dεij. (3.21)

We can now integrate by substitution. Define t = exp(−εij), so that dt = − exp(−εij) · dεij . Note
that limεij→−∞ t =∞ and limεij→∞ t = 0. Then we can rewrite our integral as:

Pr(yi = j |xi) =

∫ ∞
0

exp

{
−t ·

∑
k

exp
[
−
(
αj0 + αj1xi − αk0 − αk1xi

)]}
dt (3.22)

=

[
exp

{
−t ·

∑
k exp

[
−
(
αj0 + αj1xi − αk0 − αk1xi

)]}
−
∑

k exp
[
−
(
αj0 + αj1xi − αk0 − αk1xi

)] ]∞
0

(3.23)

=
1∑

k exp
[
−
(
αj0 + αj1xi − αk0 − αk1xi

)] (3.24)

=
exp

[
αj0 + αj1xi

]∑
k exp

[
αk0 + αk1xi

] . (3.25)

Let’s return to our example with three outcomes, y ∈ {1, 2, 3}. The last derivation implies that we
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can write the conditional probabilities of the outcomes as:

Pr(yi = 1 |xi) =
exp

(
α
(1)
0 + α

(1)
1 xi

)
exp

(
α
(1)
0 + α

(1)
1 xi

)
+ exp

(
α
(2)
0 + α

(2)
1 xi

)
+ exp

(
α
(3)
0 + α

(3)
1 xi

) ; (3.26)

Pr(yi = 2 |xi) =
exp

(
α
(2)
0 + α

(2)
1 xi

)
exp

(
α
(1)
0 + α

(1)
1 xi

)
+ exp

(
α
(2)
0 + α

(2)
1 xi

)
+ exp

(
α
(3)
0 + α

(3)
1 xi

) ; (3.27)

Pr(yi = 3 |xi) =
exp

(
α
(3)
0 + α

(3)
1 xi

)
exp

(
α
(1)
0 + α

(1)
1 xi

)
+ exp

(
α
(2)
0 + α

(2)
1 xi

)
+ exp

(
α
(3)
0 + α

(3)
1 xi

) . (3.28)

It would be tempting to take these three conditional probabilities and write the log-likelihood; for
our three outcomes, we could therefore try to maximise the log-likelihood across six unknown
parameters (that is, the parameters α(1)

0 , α(2)
0 , α(3)

0 , α(1)
1 , α(2)

1 and α(3)
1 ). However, this would be

a mistake, because we would be unable to find a unique set of values that would maximise the
function. (That is, the model would be underidentified.) The reason, of course, is that we can
only ever express utility in relative terms: we have seen this principle already in deriving both
the probit and the Ordered Probit models. We therefore need to choose a ‘base category’, and
estimate relative to the utility from that category. We shall choose 1 as the base category, and
define β(2)

0 ≡ α
(2)
0 − α

(1)
0 and β(2)

1 ≡ α
(2)
1 − α

(1)
1 (and symmetrically for β(3)

0 and β(3)
1 ). Note the

emphasis here that the choice of base category is arbitrary: our predicted probabilities would be
identical if we were to choose a different base category. Then we can multiply numerator and
denominator of each conditional probability by exp(−α(1)

0 − α
(1)
1 xi), to obtain:

Pr(yi = 1 |xi) =
1

1 + exp
(
β
(2)
0 + β

(2)
1 xi

)
+ exp

(
β
(3)
0 + β

(3)
1 xi

) ; (3.29)

Pr(yi = 2 |xi) =
exp

(
β
(2)
0 + β

(2)
1 xi

)
1 + exp

(
β
(2)
0 + β

(2)
1 xi

)
+ exp

(
β
(3)
0 + β

(3)
1 xi

) ; (3.30)

Pr(yi = 3 |xi) =
exp

(
β
(3)
0 + β

(3)
1 xi

)
1 + exp

(
β
(2)
0 + β

(2)
1 xi

)
+ exp

(
β
(3)
0 + β

(3)
1 xi

) . (3.31)

These conditional probabilities can then be used to define the log-likelihood; it is now straightfor-
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ward that, for the ith individual, the log-likelihood is:12

`i

(
β
(1)
0 , β

(1)
1 , β

(2)
0 , β

(2)
1 ; yi |xi

)
= 1 (yi = 1) · ln [Pr(yi = 1 |xi)] + 1 (yi = 2) · ln [Pr(yi = 2 |xi)]
+ 1 (yi = 3) · ln [Pr(yi = 3 |xi)] . (3.32)

This log-likelihood function defines the ‘Multinomial Logit’ model. The Multinomial Logit is the
simplest model for unordered choice. (Note that, if J = 2, the Multinomial Logit collapses to the
logit model that we considered in Lecture 2.) Marginal effects in the Multinomial Logit model are
directly analogous to marginal effects in the earlier models.

3.4 Estimates from Tanzania
Table 3.1 shows the estimates from the Tanzanian data. Note that, given the foundation of our
additive random utility model, we can express the estimates in terms of ‘relative utility’ from self-
employment and wage employment; we estimate β̂(1)

0 = −36.383, β̂(1)
1 = 0.019, β̂(2)

0 = −48.562

and β̂
(2)
1 = 0.025. All four estimates are highly significant. Figure 3.5 shows the consequent

predicted probabilities of all three work categories (conditional upon having employment); this
shows that older employed Tanzanians are significantly more likely to be working in agriculture
than are younger employed Tanzanians, and that the converse applies for wage employment and
self-employment.

12 I denote the indicator function by 1(·). Note that, for simplicity, I have not explicitly written each conditional
probability as depending upon the parameters of interest, though they clearly do.
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Table 3.1: Estimates from Tanzania: Multinomial Logit

Estimates Mean Marginal Effects
y = 1 y = 2

(1) (2) (3)
Year born 0.001 0.002

(0.0007)∗∗∗ (0.0006)∗∗∗

Relative utility of self-employment:
Year born 0.019

(0.003)∗∗∗

Const. -36.383
(6.308)∗∗∗

Relative utility of wage employment:
Year born 0.025

(0.004)∗∗∗

Const. -48.562
(7.289)∗∗∗

Obs. 4136
Log-likelihood -4218.448
Pseudo-R2 0.006
Confidence: ***↔ 99%, **↔ 95%, *↔ 90%.

Figure 3.5: Occupational categories and age in Tanzania: Multinomial Logit estimates
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3.5 From Multinomial Logit to Conditional Logit
We assumed earlier that the ith individual’s utility from the jth choice depends linearly upon (i)
the observable characteristics of the individual, xi and (ii) unobservable characteristics of the
individual’s taste for that choice, εij:

Uij(xi) = α
(j)
0 + α

(j)
1 xi + εij. (3.2)

Critically, this structure does not allow for observable characteristics of different options. How-
ever, we can allow straightforwardly for that possibility, by allowing the variable x to be indexed
by both individual and potential choice: xij . That is, we now assume that the researcher observes
information on characteristics of options that the ith individual did not choose — for example, a
researcher might know what the ith individual would have paid to take the train, even though she
actually chose the bus.13 We can therefore write Uij as a linear function of characteristics — and,
for the sake of generality, we now use vector notation to allow for multiple characteristics:14

Uij(xij) = α · xij + εij. (3.33)

Note that xij is indexed at the level of the option-individual combination; the vector includes char-
acteristics that vary at the level of the individual and the choice — for example, respondents may
face different relative costs of using different types of transport. Wooldridge cautions (2002, page
500) that “xij cannot contain elements that vary only across i and not j; in particular, xij does not
contain unity”. This means, therefore, that xij cannot include personal characteristics (for exam-
ple, age, sex, income, etc); we will see an intuitive reason for this shortly (in equation 3.39).

In the Multinomial Logit, the outcome y was indexed by individuals, and took the value of the
particular choice made; for example, we might write yi = j. But in the Conditional Logit model,
we need to express the outcome at the level of the individual-choice combination. Therefore, we
redefine our outcome as a binary variable:

yij =

{
1 if the ith individual chooses option j, and;
0 if the ith individual chooses some other option k 6= j.

(3.34)

All of our reasoning from the Multinomial Logit extends to the Conditional Logit. The conditional
probability of individual i choosing outcome j is:

Pr(yij = 1 |xi1, . . . ,xiJ) =
exp(β · xij)∑J
k=1 exp(β · xik)

. (3.35)

13 Cameron and Trivedi provide an example of this kind of data structure in their Table 15.1 on page 492; in that
application, a researcher observes the price that different respondents faced for each of four types of fishing, even
though each respondent chose only one type.

14 Of course, we could also have used vector notation for all of our earlier reasoning in the Multinomial Logit model;
this would have implied estimating two vectors β(1)

1 and β(2)
1 . But the scalar case captured all of the important

aspects of Multinomial Logit in a simpler context, and matched directly our illustrative empirical application.
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The log-likelihood follows straightforwardly:

`i (β; yi1, . . . , yiJ |xi1, . . . ,xiJ) =
J∑
j=1

yij · ln Pr(yij = 1 |xi1, . . . ,xiJ). (3.36)

3.6 Independence assumptions
The Multinomial Logit and Conditional Logit are very tractable models. As we have discussed,
they provide an analytical expression for the log-likelihood; this function can therefore be evalu-
ated and maximised easily. But this analytical tractability comes at a cost: the Multinomial Logit
and Conditional Logit both require that the unobservable terms, εij , have a Type I Extreme Value
distribution, and that these terms are distributed independently of each other. This has serious
implications for a structure of individual choice. Consider, for example, the Multinomial Logit.
Using equation 3.25, we can write the ratio of the conditional probability that yi = A and that
yi = B:

Pr (yi = A |xi)
Pr (yi = B |xi)

=
exp

[
α
(A)
0 + α

(A)
1 xi

]
exp

[
α
(B)
0 + α

(B)
1 xi

] (3.37)

= exp
[
α
(A)
0 − α(B)

0 +
(
α
(A)
1 − α(B)

1

)
· xi
]
. (3.38)

That is, the ratio of probabilities for any two alternatives cannot depend upon how much the re-
spondents like any of the other alternatives on offer. Similarly, consider the Conditional Logit.
Using equation 3.35, the ratio of conditional probabilities for two choices is:

Pr(yiA = 1 |xi1, . . . ,xiJ)

Pr(yiB = 1 |xi1, . . . ,xiJ)
= exp [β · (xiA − xiB)] . (3.39)

Thus, in the Conditional Logit model, the ratio of probabilities for two alternaties cannot depend
upon the characteristics of any other alternative (or, as noted, on any characteristics that do not
vary across j).

Cameron and Trivedi (page 503, emphasis in original) describe why these results are so concerning:

A limitation of the [Conditional Logit] and [Multinomial Logit] models is that dis-
crimination among the [J] alternatives reduces to a series of pairwise comparisons
that are unaffected by the characteristics of alternatives other than the pair under con-
sideration. . .

As an extreme example, the conditional probability of commute by car given commute
by car or red bus is assumed in an MNL or CL model to be independent of whether
commuting by blue bus is an option. However, in practice we would expect introduc-
tion of a blue bus, which is the same as a red bus in every aspect except colour, to have
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little impact on car use and to halve use of the red bus, leading to an increase in the
conditional probability of car use given commute by car or red bus.

This weakness of MNL is known in the literature as the red bus – blue bus problem, or
more formally as the assumption of [Luce] independence of irrelevant alternatives.

This is clearly a serious limitation of the conditional logit and multinomial logit. Indeed, in his
Nobel Prize Lecture in 2000, Daniel McFadden even went so far as to say (page 339):

The MNL model has proven to have wide empirical applicability, but as a theoretical
model of choice behaviour its IIA property is unsatisfactorily restrictive.

A variety of alternative models have been developed in order to relax these independence assump-
tions while still maintaining a clear basis in individual utility maximisation. For example, the
Alternative-Specific Multinomial Probit assumes that the values of εij are drawn from a multivari-
ate normal distribution with a flexible covariance matrix; this would allow, for example, that the
unobservable utility from taking a blue bus is very close to the unobservable utility from taking
a red bus. However, this model — like most other alternative models — does not admit a closed
form expression for the log-likelihood. The log-likelihood is therefore evaluated using simulation-
based methods (e.g. ‘Maximum Simulated Likelihood’). These models are beyond the scope of
our lectures — though they build directly upon the principles that we have discussed.

3.7 Appendix to Lecture 4: Stata code
First, clear the memory and load the data, as in previous lectures. We can then tabulate the variable
WorkCat:

tab work_cat

We can estimate a multinomial logit — with a base category of 1 (agricultural employment) —
using the ‘mlogit’ command. The ‘margins’ command will again provide the mean marginal
effects (assuming that you can correctly specify the outcomes of interest!).
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4 Lecture 4: Count models
Required readings:

• ? CAMERON, A.C. AND TRIVEDI, P.K. (2005): Microeconometrics: Methods and Appli-
cations. Cambridge University Press, pages 665 – 677 (i.e. sections 20.1 to 20.4.1, inclusive)
or

• ? WOOLDRIDGE, J. (2002): Econometric Analysis of Cross Section and Panel Data. The
MIT Press, pages 645 – 657 (i.e. sections 19.1 to 19.3.1, inclusive)
or

• ? WOOLDRIDGE, J. (2010): Econometric Analysis of Cross Section and Panel Data (2nd
ed.). The MIT Press, pages 723 – 738 (i.e. sections 18.1 to 18.3.1, inclusive).

4.1 Introduction: The concept of a count model
There are many ways in which a dependent variable may be ‘limited’. In our first and second
lectures, we considered the simplest way: an outcome may be binary. In our third lecture, we
generalised this to the case of multinomial choice – in which the dependent variable takes a finite
set of values. In this final lecture, we consider models for the the case of a dependent variable that
can take any non-negative integer values: that is, count models.

4.2 Motivating example: Fertility trends in Tanzania
As in our three previous lectures on Limited Dependent Variables, we will illustrate using data
from Tanzania. In this lecture, we will use data from the Tanzanian DHS surveys of 1992 and
2017.15

Figure 4.1 shows the relationship between (i) the age of respondent women (in 1992) and (ii) the
number of children ever born to each woman. Figure 4.2 shows the equivalent figure for 2017.
There appears to be an interesting ‘demographic shift’ evident in these graphs: in 1992, for exam-
ple, 40-year old Tanzanian women had, on average, given birth to about six children each; in 2017,
the equivalent figure was about five.

Suppose that we want to formalise this insight – by estimating an econometric model that allows
directly for the ‘count’ nature of the outcome variable. In this lecture, we will consider two models
for doing so: the Poisson and the Negative Binomial.

15 Unlike the previous lectures, this is not data that is publicly available; if you would like to work with this data, you
need to apply at https://dhsprogram.com/.
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4.2 Motivating example: Fertility trends in Tanzania

Figure 4.1: Age and children, Tanzania, 1992 (DHS data)

Figure 4.2: Age and children, Tanzania, 2017 (DHS data)
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4.3 Introducing the Poisson model
Prussian cavalry soldiers died in many different ways. Sadly, this included being killed by being
kicked by horses: from 1875 to 1894, a total of 196 Prussian cavalry members died in this way.16

Famously, the Russian statistician Ladislaus Bortkiewicz used this data – disaggregated by year
and by cavalry corps – to introduce the Poisson distribution.17 You have already met the Poisson
distribution on this course: as an application of the general principles of Maximum Likelihood, in
a class exercise. In this lecture, we will discuss the model in more detail, and apply it – along with
a model generalisation – to the issue of declining fertility in Tanzania.

In each of our three previous lectures, we started with random choice frameworks: you will recall
that we respectively discussed the ways in which Additive Random Utility Models could be used
as the conceptual foundation for the Probit model, the Logit model and the Multinomial Logit
model. In the case of the Poisson model, the typical foundation is more ‘statistical’: specifically,
we can think of the Poisson as a limiting case of a repeated draw from the Binomial distribution.

Specifically, start by considering a Binomial distribution, in which we have n independent draws,
each having a probability of success of p. In that case, the distribution of the total number of
successes, Y ∈ {0, . . . , n}, is:

Pr(Y = y) =
n!

y! · (n− y)!
· py · (1− p)n−y (4.1)

=
n× (n− 1)× . . .× (n− y + 1)

y!
· py · (1− p)n−y. (4.2)

We know that this has an expectation of np; we will denote this as λ ≡ np. We can therefore
substitute p = λ/n into the expression:

Pr(Y = y) =
n× (n− 1)× . . .× (n− y + 1)

y!
·
(
λ

n

)y
·
(

1− λ

n

)n−y
(4.3)

=
n× (n− 1)× . . .× (n− y + 1)

y!
·
(
λ

n

)y
·
(

1− λ

n

)n
·
(

1− λ

n

)−y
(4.4)

=
n

n
× n− 1

n
× . . .× n− y + 1

n
· λ

y

y!
·
(

1− λ

n

)n
·
(

1− λ

n

)−y
(4.5)

Let’s think about what happens if we (i) hold fixed this expectation, λ, but (ii) increase to infinity
the number of draws, n. (If we think of the n draws as occurring within some fixed total time
period, this limit corresponds to the limit as the duration of each draw goes to zero.) From the
previous expression – and remembering the rule that limn→∞ (1− λ/n)n = exp (−λ) – we can
say:

lim
n→∞

Pr(Y = y) =
λy · exp(−λ)

y!
. (4.6)

16 See, for example, https://www.randomservices.org/random/data/HorseKicks.html.
17 See https://en.wikipedia.org/wiki/Ladislaus_Bortkiewicz.
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4.4 Fitting the Poisson model

This expression defines the probability mass function for the Poisson. Figure 4.3 shows the prob-
ability mass function for y ∈ {0, . . . , 7} children, for λ = 2.2; the figure shows the pmf for four
binomial distributions (corresponding to n = 10, n = 20, n = 40 and n = 80), as well as for the
Poisson.

Figure 4.3: The Poisson as limiting case of the Binomial

4.4 Fitting the Poisson model
Let’s now take our Poisson model to the data. Before we start introducing a role for age, we will
think about how to estimate the Poisson model on the unconditional distribution of the number of
children born to each woman. Specifically, we will think about how, for a given set of observations,
yi (for respondents indexed i ∈ {1, . . . , N}), we can find the Maximum Likelihood estimate for
the Poisson parameter, λ. We will do this using the 2017 DHS data described earlier.
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Returning to equation 4.6, we can proceed as follows:

Pr(Y = y;λ) =
λy · exp(−λ)

y!
(4.7)

∴ L(λ; y1, . . . , yN) =
N∏
i=1

λyi · exp(−λ)

yi!
(4.8)

∴ `(λ; y1, . . . , yN) =
N∑
i=1

(yi · lnλ− λ− ln yi!) . (4.9)

Taking the first-order condition with respect to λ, it follows that:

N∑
i=1

yi

λ̂
= N (4.10)

∴ λ̂ =
1

N
·
N∑
i=1

yi. (4.11)

So – as one might intuitively expect – the Maximum Likelihood estimate of λ is simply the sample
average number of children. (This derivation approach should be familiar from the class exercise
on the Poisson model that you did for our ‘introduction to Maximum Likelihood’ lectures.)

In the 2017 Tanzanian DHS data, the average number of children per woman is 2.2; therefore, this
is our Maximum Likelihood estimate: λ̂ = 2.2. Figure 4.4 shows the implications of this estimate:
the figure shows (i) a histogram of the distribution of children per woman, and (ii) the predicted
probabilities from the Poisson model, using λ = 2.2.

Clearly, we have a problem. Even though λ̂ = 2.2 is the Maximum Likelihood estimate, the
Poisson model clearly fits the data very poorly. Note, for example, that the Poisson model (with
λ̂ = 2.2) implies that the modal number of children per mother should be 2; instead, the true mode
is zero. Indeed, the model predicts that about 12% of Tanzanian women in 2017 had no children;
the true number is just over 30%.

4.5 Overdispersion and the Negative Binomial model
4.5.1 Introducing the Negative Binomial

The problem illustrated in Figure 4.4 is often referred to as ‘overdispersion’: that is, the data shows
greater heterogeneity than the underlying model allows. The fundamental problem here is that the
Poisson distribution – for all its elegance and its relative statistical simplicity – is simply not flex-
ible enough to model count outcomes in many real-world scenarios. This is because the Poisson
has the ‘equidispersion’ property that E(Y ) = Var(Y ) = λ. (We consider E(Y ) in the appendix
to this lecture; you will have the opportunity to consider Var(Y ) in the class exercises.)
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Figure 4.4: Poisson estimates: Distribution of children per woman in Tanzania (2017)

There are several possible ways of proceeding. In this lecture, we will consider the Negative Bi-
nomial model: a common and flexible generalisation of the Poisson. The Negative Binomial deals
with the overdispersion problem in a very elegant way: it assumes a Poisson model for each in-
dividual, but – even before we add covariates – it allows each individual to have a different value
of λ. We can therefore think of the Negative Binomial as a ‘random parameter’ extension of the
Poisson model.

Specifically, instead of treating λ as a fixed parameter, common to all respondents, we assume that
λ itself is a random parameter, drawn such that:18

λi ≡ µ · νi (4.12)

νi ∼ Gamma
(

1

α
, α

)
. (4.13)

We will not discuss the details of the Gamma distribution (and you do not need to know such details
for any exam question on my part of the course). Note, though, that a variable with a distribution
Gamma (α−1, α) has a mean 1 and a variance α.

This implies that the pdf for νi is:

ν(1−α)/α · exp(−ν/α)

α1/α · Γ(1/α)
. (4.14)

18 I follow here the explanation in the Stata manual for the command nbreg.
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We have just introduced the Gamma function, Γ(z). We will not discuss this function in any de-
tail19 – however, note that, for any positive integer z, Γ(z) = (z − 1)!.

We can therefore say:20

Pr(Y = y;α, µ) =

∫ ∞
0

(µν)y · exp(−µν)

y!︸ ︷︷ ︸
conditional density for Y given ν

· ν
(1−α)/α · exp(−ν/α)

α1/α · Γ(1/α)︸ ︷︷ ︸
marginal density for ν

dν (4.15)

= a bunch of steps that we won’t worry about, and then. . .

=
Γ (α−1 + y)

Γ (α−1) · Γ (y + 1)
·
(

1

1 + αµ

)α−1

·
(

1− 1

1 + αµ

)y
(4.16)

=
µy

y!
· Γ (α−1 + y)

Γ (α−1) · (α−1 + µ)y
· 1

(1 + αµ)α
−1 . (4.17)

This is an interesting function, for several reasons:

(i) Consider the limit as α→ 0. We can say:

lim
α→0

Pr(Y = y;α, µ) =
µy

y!
· lim
α→0

Γ (α−1 + y)

Γ (α−1) · (α−1 + µ)y
· lim
α→0

1

(1 + αµ)α
−1 (4.18)

=
µy

y!
· 1 · 1

exp(µ)
(4.19)

=
µy

y!
· exp(−µ), (4.20)

which, of course, is the probability mass function for the Poisson with parameter µ. That is,
as we should expect, we recover the Poisson model in the limiting case where the variance
of ν goes to zero.

(ii) Suppose that α−1 is some integer r. Then we can rewrite the probability as:

Pr(Y = y) =
(y + r − 1)!

(r − 1)! · y!
· (1− p)r · py (4.21)

=

(
r + y − 1

y

)
· (1− p)r · py, (4.22)

19 Formally, Γ(z) =

∫ ∞
0

xz−1 · exp(−x) dx.
20 To get from equation 4.16 to 4.17, note that(

1− 1

1 + αµ

)y

=

(
αµ

1 + αµ

)y

= µy ·
(

α

1 + αµ

)y

= µy ·
(

1

α−1 + µ

)y

.
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4.5 Overdispersion and the Negative Binomial model

where p = µ/(r + µ). With this formulation, the probability is equivalent to the probability,
in a sequence of independent binary events, of y successes before r failures (where p is the
probability of a ‘success’). This is an alternative (and common) application for the Negative
Binomial model.

4.5.2 Estimating the Negative Binomial

When we estimate the Negative Binomial we obtain µ̂ = 2.2 and α̂ = 0.82. Figure 4.5 shows the
implication of these estimates for the distribution of λi.

Figure 4.5: Estimated distribution of λi

Figure 4.6 shows the predicted value for the number of children born.

4.5.3 Testing the restriction that α = 0

As we just discussed, the Poisson is a special case of the Negative Binomial. We can, therefore,
test the null hypothesis that the data is generated by a Poisson model, against the less restrictive
hypothesis that the data is generated by a Negative Binomial. We can do this by constructing the
standard Likelihood Ratio test statistic – where the log-likelihood for the Negative Binomial is the
‘unrestricted’ log-likelihood, and the Poisson provides the relevant ‘restricted’ log-likelihood.

However, there is one important twist to the Likelihood Ratio test in this case. It is true that the
Poisson is a special case of the Negative Binomial – but, specifically, it is a special limiting case.
That is, the Poisson corresponds to the Negative Binomial when α = 0, and α = 0 lies on the
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Figure 4.6: Negative Binomial estimates: Distribution of children per woman in Tanzania
(2017)

boundary of the admissible parameter set for α. (Put simply, we want to test whether the variance
of λi is zero – and negative variances are impossible.)

For this reason, we should not compare the Likelihood Ratio statistic to the usual χ2(1) distribution,
but to a distribution known as the χ2(0, 1). In practice, this amounts to calculating the p-value from
the usual χ2(1) distribution and then halving it. (Intuitively, this is very similar to the distinction
between a two-tailed test and a one-tailed test; for a single parameter restriction, we can think of
the usual LR test as a two-tailed test, whereas we are interested here in testing H0 : α = 0 against
the one-sided alternative hypothesis, H1 : α > 0.)
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4.6 Introducing the covariate
Time, at last, to introduce women’s age to the analysis. Having discussed the construction of the
log-likelihood for both the Poisson and the Negative Binomial models, it is relatively straightfor-
ward to include covariates: we simply need to choose some functional form that links the Poisson
mean to the covariates of interest. There are any number of ways in which you might choose to do
this; the only restriction is that, for any values of the covariates, λ must remain positive.

One very standard parameterisation is to use an exponential link function:21

λi = exp(β · xi). (4.23)

Figure 4.7 shows the predicted values from this estimation for our Tanzanian data (that is, using
Maximum Likelihood to estimate with λi = β0 +β1 ·xi, where xi is the age of female respondent).

Figure 4.7: Negative Binomial estimates: Distribution of children per woman in Tanzania
(2017)

21 In Stata, the Poisson command imposes this link as standard. If you would like to use a different link function to
estimate the Poisson in Stata, you can explore the glm command.
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4.7 Other comments on Poisson
To conclude our lecture, let me make three brief points:

(i) When using the Poisson model for your own research, you need to take a stance on whether
you want to use ‘robust’ standard errors. In this lecture, we have discussed Poisson as
a Maximum Likelihood estimator. In most applications, ‘robust’ estimation is probably a
good idea; this then involves ‘pseudo-Maximum Likelihood’ (sometimes also called ’quasi-
Maximum Likelihood’). This is discussed, for example, in section 5.2.3 of Cameron and
Trivedi.

(ii) When estimating the Negative Binomial model, there is an important decision to be made
about the structure of the variance. One approach – which we discussed in this lecture – is
‘mean dispersion’. This is the default in Stata, and is sometimes referred to as the ‘NB2’
option. There is also a ‘constant-dispersion’ option, sometimes referred to as ‘NB1’.

(iii) Note that there are panel estimator versions available for both the Poisson and the Negative
Binomial model (in Stata, these are ‘xtpoisson’ and ‘xtnbreg’).

(iv) The Poisson – with robust or clustered errors – can be an excellent estimator for any situation
where you have a skewed non-negative outcome variable (for example, wages). We will
discuss this briefly in the lecture; it may be useful (for example) for your dissertation work.
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4.8 Appendix: The mean of the Poisson
In this appendix, we prove that the expectation of a Poisson-distributed random variable is λ:

Pr(Y = y) =
λy · exp(−λ)

y!
(4.24)

∴ E(Y ) =
∞∑
y=0

y · Pr(Y = y) (4.25)

=
∞∑
y=1

y · Pr(Y = y) (4.26)

=
∞∑
y=1

y · λ
y · exp(−λ)

y!
(4.27)

=
∞∑
y=1

λy · exp(−λ)

(y − 1)!
(4.28)

= λ ·
∞∑
y=1

λy−1 · exp(−λ)

(y − 1)!
(4.29)

= λ ·
∞∑
y=0

λy · exp(−λ)

y!
(4.30)

= λ ·
∞∑
y=0

Pr(Y = y) (4.31)

= λ. (4.32)

You will have the opportunity, in your class exercises, to adapt this proof to find the variance of a
Poisson-distributed random variable.
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5 Lecture 5 (NOT EXAMINABLE): Discrete ordered choice
Required reading:

• ? CAMERON, A.C. AND TRIVEDI, P.K. (2005): Microeconometrics: Methods and Appli-
cations. Cambridge University Press, pages 519 – 520 (i.e. section 15.9.1)
or

• ? WOOLDRIDGE, J. (2002): Econometric Analysis of Cross Section and Panel Data. The
MIT Press, pages 504 – 507 (i.e. section 15.10)
or

• ? WOOLDRIDGE, J. (2010): Econometric Analysis of Cross Section and Panel Data (2nd
ed.). The MIT Press, pages 655 – 659 (i.e. sections 16.3.1 and 16.3.2).

Other references:

• CUNHA, F., HECKMAN, J. AND NAVARRO, S. (2007): “The Identification and Economic
Content of Ordered Choice Models with Stochastic Thresholds,” International Economic
Review, 48(4), 1273–1309.

5.1 The concept of ordered choice
In Lectures 1 and 2, we considered the problem of binary outcome variables; we did so by consid-
ering Tanzanians’ decision whether or not to complete primary school education. In this lecture,
we extend our earlier reasoning to consider the problem of discrete ordered choice. To do so, we
will continue to work with the Tanzanian ILFS dataset; we will now consider Tanzanians’ decision
between three choices: (i) not completing primary education, (ii) completing primary education
but not secondary education, and (iii) completing secondary education.

We will denote our outcome variable as follows:

yi =


0 if the ith individual did not complete primary education;
1 if the ith individual completed primary education but not secondary education;
2 if the ith individual completed secondary education.

(5.1)

Figure 5.1 shows how attainment of primary and secondary education has changed over time in
Tanzania; it plots our new variable yi against respondents’ year of birth (xi). Note again one of the
key characteristics of many limited dependent variable models: the outcome variable is categori-
cal, so the numerical values taken by yi have no cardinal meaning. There is no sense, for example,
in which completing secondary education (yi = 2) is ‘twice as good’, or ‘twice as useful’, or ‘twice
as anything’ as completing primary education (yi = 1).

We will model this education decision as an ordered choice. It is clear that, in some intuitive
sense, the categories ‘no education’ – ‘primary education’ – ‘secondary education’ are ordered; for
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5.2 A simple optimal stopping model

Figure 5.1: Primary and secondary school attainment in Tanzania across age cohorts

example, secondary education requires more time than primary education, which itself (obviously)
requires more time than no education. This kind of intuitive reasoning often justifies the description
of a choice as a ‘discrete ordered choice’. Ideally, though, we should be able to go further: we
should be able to describe the outcome as a monotone step function of some continuous latent
variable. To illustrate what this might mean, we will consider a simple microeconomic model of
Tanzanians’ investment in education.

5.2 A simple optimal stopping model
Assume that a student obtains some utility from attending school (or, equivalently, pays some util-
ity cost), and that this utility changes with (i) the student’s year of birth (xi), and (ii) the student’s
unobserved taste for education (εi):

usit(xi) = β0 + β1xi + εi. (5.2)

Additionally, assume that the student may work and receive in-period utility determined by the
student’s level of education (si):

uit(si) = αsi. (5.3)

We assume that εi is known to the student, but unobservable to a researcher.
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For simplicity, let’s assume that the student faces only three choices: (i) do not attend school
(s = 0), (ii) finish primary school (s = 7), and (iii) finish secondary school (s = 12). We will
assume that students have a lifetime of known finite duration T > 12 years and, for simplicity, we
will make the extreme assumption that students assign equal utility weight to each period.22 Given
these assumptions, we can write three value functions, one corresponding to each choice:

V0(0, xi, εi) = 0 (5.4)
V0(7, xi, εi) = 7 · (β0 + β1xi + εi) + (T − 7) · 7α (5.5)
V0(12, xi, εi) = 12 · (β0 + β1xi + εi) + (T − 12) · 12α. (5.6)

Therefore, the student prefers s = 7 to s = 0 if and only if:23

β0 + β1xi + εi ≥ (7− T ) · α. (5.7)

Similarly, the student prefers s = 12 to s = 7 if and only if:

12 · (β0 + β1xi + εi) + (T − 12) · 12α ≥ 7 · (β0 + β1xi + εi) + (T − 7) · 7α (5.8)
⇔ β0 + β1xi + εi ≥ (19− T ) · α. (5.9)

We can therefore define two ‘cutpoints’,

κ1 = α · (7− T )− β0 (5.10)
κ2 = α · (19− T )− β0, (5.11)

and express the ith student’s decision (yi) as an ordered choice in the latent variable β1xi + εi:

y(xi, εi; β1, κ1, κ2) =


0 if β1xi + εi < κ1;
1 if β1xi + εi ∈ [κ1, κ2) ;
2 if β1xi + εi ≥ κ2.

(5.12)

Our simple optimal stopping model therefore implies that y(x, ε; β0, β1) is a monotone step func-
tion in β1xi + εi. Cunha, Heckman and Navarro (2007) discuss several classes of models —
including a dynamic schooling choice model — that imply this kind of monotone step function
solution. Figure 5.2 illustrates.

Notice that, in this model, the observable covariate x affects the latent index rather than the cut-
points; for this reason, we can describe the Ordered Probit as a model of ‘index shift’. There are
two reasons that this result matters for empirical analysis:

(i) We may wish to exploit the ordered nature of the outcome variable for more efficient esti-
mation;

(ii) We may wish to test the microeconomic model by testing the implication that x affects
educational choice through ‘index shift’.

22 That is, we will use a subjective discount factor of 1.
23 We will assume that the indifferent student chooses the higher level of education.
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5.3 The Ordered Probit

Figure 5.2: Optimal schooling as a monotone step function in β1xi + εi
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5.3 The Ordered Probit
The implications of our simple optimal stopping model are important. However, we need more
before we can take these implications to data: once again, we need a distributional assumption
about ε. We will make the same assumption that we made in Lecture 1.

Assumption 5.1 (DISTRIBUTION OF εi) εi is i.i.d. with a standard normal distribution, indepen-
dent of xi:

εi |xi ∼ N (0, 1). (5.13)

Armed with this assumption, it is straightforward to write the log-likelihood for the ith individual:

`i(β1, κ1, κ2; yi |xi) =


ln Φ (κ1 − β1xi) if yi = 0;
ln [Φ (κ2 − β1xi)− Φ (κ1 − β1xi)] if yi = 1;
ln [1− Φ (κ2 − β1xi)] if yi = 2.

(5.14)

5.4 Marginal effects in the Ordered Probit model
Marginal effects in the Ordered Probit model are directly analogous to marginal effects in the
probit model. For simplicity, we will consider only the case in which xi is continuous. Consider
first the marginal effects for the extreme categories, yi = 2 and yi = 0. Following the reasoning in
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5.5 The Ordered Probit in Tanzania

subsection 1.6, we have:

M0(xi; β̂1, κ̂1) =
∂ Pr(yi = 0 |xi; β̂1, κ̂1)

∂xi
= −β̂1 · φ

(
κ̂1 − β̂1 · xi

)
, and (5.15)

M2(xi; β̂1, κ̂2) =
∂ Pr(yi = 2 |xi; β̂1, κ̂2)

∂xi
= β̂1 · φ

(
κ̂2 − β̂1 · xi

)
. (5.16)

For the intermediate category, we can find the marginal effect simply by considering the effect of
xi at both cutoffs:

M1(xi; β̂1, κ̂1, κ̂2) =
∂ Pr(yi = 1 |xi; β̂1, κ̂1, κ̂2)

∂xi
= β̂1 ·

[
φ
(
κ̂1 − β̂1 · xi

)
− φ

(
κ̂2 − β̂1 · xi

)]
.

(5.17)

These principles generalise naturally to the case where xi is discrete, and to the case in which there
are more than three categories.

5.5 The Ordered Probit in Tanzania
Table 5.1 shows the estimates from the Ordered Probit model for our Tanzanian data: we estimate
β̂1 = 0.039, κ̂1 = 76.672 and κ̂2 = 78.517. Columns 2 and 3 respectively show the mean marginal
effects for the outcomes y = 1 and y = 2 (that is, I omit the mean marginal effect for outcome
y = 0; you should be able to calculate this, however). Figure 5.3 shows the consequent predicted
probabilities.

Table 5.1: Estimates from Tanzania: Ordered Probit

Estimates Mean Marginal Effects
y = 1 y = 2

(1) (2) (3)
Year born 0.039 0.008 0.005

(0.001)∗∗∗ (0.002)∗∗∗ (0.002)∗∗∗

Cutoff 1 (κ̂1) 76.672
(1.886)∗∗∗

Cutoff 2 (κ̂2) 78.517
(1.890)∗∗∗

Obs. 10000
Log-likelihood -7972.275
Pseudo-R2 0.105
Confidence: ***↔ 99%, **↔ 95%, *↔ 90%.

54 simon.quinn@economics.ox.ac.uk



5.6 The Generalised Ordered Probit

Figure 5.3: Ordered Probit estimates for primary and secondary school attainment in Tanza-
nia across age cohorts

5.6 The Generalised Ordered Probit
We just noted that the Ordered Probit model is a model of index shift: the observable variable xi
affects the latent index β1xi + εi. This was justified by our simple optimal stopping model, in
which year of birth (xi) directly affected each student’s utility from attending school. This model
— i.e. both the optimal stopping model and the Ordered Probit — therefore implied that we could
summarise the effect of age on both primary and secondary education with a single parameter: β̂1.
This implies, for example, that if we estimate that, over time, students are more likely to complete
primary school (i.e. Pr(yi = 0 |xi) is decreasing), we must also estimate that students are more
likely to complete secondary school (i.e. that Pr(yi = 2 |xi) is increasing). This is implied in
equations 5.15 and 5.16; the marginal effects on the largest and smallest outcomes must have op-
posite signs.

However, we might be concerned that this structure is too restrictive. After all, there might be many
good reasons that, over time, students have become less likely to complete secondary education
and less likely to complete no education at all (i.e. with more students stopping after primary
school). This might be the case if, for example, the cost of primary education has fallen over time
but the cost of secondary education has increased. In that case, we may still believe that educational
choice is a monotone step function in the student’s unobserved taste for education (εi), but we may
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5.6 The Generalised Ordered Probit

want to allow the explanatory variable to affect each cutpoint differently. That is, we may want to
use a model of ‘cutpoint shift’, rather than of ‘index shift’:

y(xi, εi; β1, κ1, κ2) =


0 if εi < κ1 − γ1xi;
1 if εi ∈ [κ1 − γ1xi, κ2 − γ2xi) ;
2 if εi ≥ κ2 − γ2xi.

(5.18)

This model is identical to our earlier model in the special case γ1 = γ2 = β1. But, by allowing γ1
and γ2 to vary separately, we can allow for a more flexible model while still exploiting the ordered
structure of the decision. (Note, of course, that we haven’t gone back to modify our simple opti-
mal stopping model to reflect this change; however, we could certainly do so — for example, by
allowing xi to affect the cost of each schooling level differently.) Figure 5.4 illustrates this more
general model.

Figure 5.4: Optimal schooling as a monotone step function in εi
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If we maintain the assumption that εi has a standard normal distribution, we can describe this new
model as a ‘Generalised Ordered Probit’. We will not write the log-likelihood for this model,
but it is straightforward and directly analogous to the log-likelihood for the Ordered Probit. Table
5.2 shows the estimation results, with estimated mean marginal effect. Compared to the Ordered
Probit, the Generalised Ordered Probit implies a slightly higher mean marginal effect upon the
probability of primary education (yi = 1), but a slightly lower effect upon the probability of
secondary (yi = 2).
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Table 5.2: Estimates from Tanzania: Generalised Ordered Probit

Estimates Mean Marginal Effects
y = 1 y = 2

Year born 0.013 0.001
(0.0002)∗∗∗ (0.0002)∗∗∗

Cutoff 1:
Year born 0.045

(0.001)∗∗∗

Const. 88.725
(2.017)∗∗∗

Cutoff 2:
Year born 0.01

(0.001)∗∗∗

Const. 21.794
(2.882)∗∗∗

Obs. 10000
Log-likelihood -7779.772
Pseudo-R2 0.126
Confidence: ***↔ 99%, **↔ 95%, *↔ 90%.

Figure 5.5 shows the consequent predicted probabilities. Figure 5.6 shows the estimated cutoff
functions for the Generalised Ordered Probit (that is, κ̂1 − γ̂1xi and κ̂2 − γ̂2xi) — along with
the cutoffs for the Ordered Probit (κ̂1 − β̂1xi and κ̂2 − β̂1xi). The diagram shows the fundamental
difference between the Ordered Probit and Generalised Ordered Probit: the Ordered Probit restricts
the cutoff functions to be parallel. Of course, this may or may not be a valid (or useful) restriction,
depending on our particular empirical context. We can test the restriction straightforwardly: you
should verify that, using a Likelihood Ratio test, we can compare the results in Tables 5.2 and
5.1 and obtain LR = 2 × (7972.275 − 7779.772) = 385.006, which implies a tiny p-value when
compared to a χ2(1) distribution.
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Figure 5.5: Generalised Ordered Probit estimates for primary and secondary school attain-
ment in Tanzania across age cohorts

Figure 5.6: Estimated cutoff functions: Ordered Probit and Generalised Ordered Probit
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5.7 The Ordered Logit and Generalised Ordered Logit
Recall that, in the binary outcome case, the probit model is motivated by the assumption that the
latent error term has a normal distribution, and the logit model is motivated by the assumption that
the error has a logistic distribution. In this lecture, we have considered the Ordered Probit and
the Generalised Ordered Probit. Both specifications have relied upon the assumption that ε has a
normal distribution. However, as in the binary outcome case, we could assume instead that ε has
a logistic distribution. By analogy to the binary outcome case, we would then call our estimators
the Ordered Logit and the Generalised Ordered Logit.

5.8 The Linear Probability Model and discrete ordered choice
In Lecture 2, we considered the Linear Probability Model as an alternative to the probit or logit
model. We can also use a Linear Probability Model as an alternative to the Generalised Ordered
Probit (or Generalised Ordered Logit). It would be tempting to write such an alternative like this:

yi = β0 + β1xi + εi, (5.19)

where yi again refers to our three-outcome measure of educational achievement and xi is again year
of birth. That is, we could simply run an OLS regression of yi on xi. However, it is very difficult
— if not impossible — to justify this approach. The reason for the difficulty is simple: as we noted
earlier, yi is a categorial outcome, where the values ‘0’, ‘1’ and ‘2’ have no cardinal meaning. It is
therefore not meaningful to talk about a ‘one unit increase in the outcome variable’ (for example,
we cannot interpret our estimate of β1 in terms of a marginal effect on a conditional probability).
Unfortunately, it is not uncommon to see researchers using specifications like equation 5.19 for
studying discrete outcomes.

Instead, we ought to estimate in a way that respects the categorical nature of the dependent variable.
If we want to use a linear probability structure, we can do this by using multiple LPM estimates.
In our Tanzanian example, we can do this by defining two new binary outcomes:

pi =

{
1 if yi = 1.
0 if yi 6= 1;

(5.20)

si =

{
1 if yi = 2.
0 if yi 6= 2;

(5.21)

We can then run two separate Linear Probability Models to estimate the effect of xi on the proba-
bility of primary compltion and the probability of secondary completion:

pi = γ0 + γ1xi + εi (5.22)
si = δ0 + δ1xi + µi. (5.23)

Figure 5.7 shows the resulting estimates. We can compare this graph directly to Figure 5.5. Of
course, the estimates illustrated in Figure 5.7 are not necessarily good estimates: all of the objec-
tions to the Linear Probability Model that we discussed in Lecture 2 still apply. Arguably, these
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objections apply with even more force where the dependent variable has multiple outcomes: we
may think that it is even more important, in this case, to use an estimator that can be rationalised
in terms of an underlying economic structure. But these estimates can at least be defended as
providing reasonable estimates of the marginal effect of xi on the probability of choosing yi = 1
and the probability of choosing yi = 2. Unfortunately, this is not something that we can say about
equation 5.19.24

Figure 5.7: Linear Probability Model estimates for primary and secondary school attainment
in Tanzania across age cohorts

24 I have introduced this ‘multiple LPM’ approach as an alternative to the Generalised Ordered Probit. We could also
use it as an alternative to models of discrete multinomial choice (i.e. ‘unordered’ choice), which we will discuss in
Lecture 4. However, as we will see in that lecture, models of unordered choice have traditionally placed particular
emphasis upon having choice-theoretic foundations — which, as we saw in Lecture 2, the Linear Probability Model
does not provide.
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5.9 Appendix to Lecture 5: Stata code
We can start by clearing the memory and loading the data — as we did in the exercises for Lectures
1 and 2. Then, we can tabulate our categorical education variable:

tab educ_cat

We can run an Ordered Probit with the oprobit command (‘help oprobit’). We can then
calculate mean marginal effects for the outcomes y = 1 and y = 2. (Notice that the margins
command works slightly differently where we need to specify which outcome we are thinking
about; try the option ‘predict(outcome(1)).).

We can fit the Generalised Ordered Probit using the goprobit command. (Note that goprobit
actually estimates, in our terminology, −κ1 and −κ2, rather than κ1 and κ2. Note also that this
command may not be installed on your computer; the command is not currently built in to Stata,
so you may have to download it separately.)

To use multiple Linear Probability Models instead, we can generate new dummy variables, then
run OLS regressions. For example, you might want to start with something like ‘gen p =
(educ_cat == 1)’.
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